
Using HDDT to avoid instances propagation in unbalanced and
evolving data streams

Andrea Dal Pozzolo, Reid Johnson, Olivier Caelen,
Serge Waterschoot, Nitesh V Chawla and Gianluca Bontempi

Abstract— Hellinger Distance Decision Trees [10] (HDDT) has
been previously used for static datasets with skewed distribu-
tions. In unbalanced data streams, state-of-the-art techniques
use instance propagation and standard decision trees (e.g.
C4.5 [27]) to cope with the unbalanced problem. However it
is not always possible to revisit/store old instances of a stream.
In this paper we show how HDDT can be successfully applied
in unbalanced and evolving stream data. Using HDDT allows us
to remove instance propagations between batches with several
benefits: i) improved predictive accuracy ii) speed iii) single-
pass through the data. We use a Hellinger weighted ensemble
of HDDTs to combat concept drift and increase accuracy of
single classifiers. We test our framework on several streaming
datasets with unbalanced classes and concept drift.

HDDT, Hellinger distance, Unbalanced data, Data streams,
Concept drift, Fraud detection.

I. INTRODUCTION

The explosion of data available everyday has increased the
amount of data to process. When data arrive as a continuous
stream of transactions, it is impossible to store all the
observations. Therefore there is the need of tools that are
able to process streams of data as soon as they arrive.

In data streams, the data distribution may change over the
time. For this reason several techniques have been developed
to deal with concept drift [30].

When the class distribution of a dataset is skewed, the
dataset is said to be unbalanced. In the static learning setting,
the problem of learning in the case of unbalanced data has
been widely explored [22]. Learning from non-stationary
data streams with skewed class distribution is, however,
a relatively recent domain. State-of-the-art techniques have
addressed this problem by propagating minority observations
between batches, with C4.5 decision tree being the most
common algorithm used [7], [16], [20], [24]. All these
techniques retain previous minority class instances in order to
combat class imbalance. In this paper we have used Hellinger
Distance Decision tree (HDDT) [9] as a base learner for

Andrea Dal Pozzolo and Gianluca Bontempi are with the Machine
Learning Group, Computer Science Department, Faculty of Sciences
ULB, Université Libre de Bruxelles, Brussels, Belgium. (email: {adalpozz,
gbonte}@ulb.ac.be).

Reid Johnson and Nitesh V Chawla are with the Data Inference Ana-
lytics and Learning Lab, Computer Science and Engineering Department,
University of Notre Dame, Notre Dame IN, USA. (email: {rjohns15,
nchawla}@nd.edu).

Olivier Caelen and Serge Waterschoot are with the Fraud Risk
Management Analytics, Worldline, Belgium. (email: {olivier.caelen,
serge.waterschoot}@worldline.com).

Research is supported by the Doctiris scholarship of Innoviris, Belgium
and in part by the NSF Grant ECCS-0926170, US.

data streams. This choice has allowed us to avoid instance
propagation and produce superior performances in terms
of predictive accuracy, computational time and resources
needed.

In order to combat concept drift we have used a batch-
ensemble model combination based on Hellinger Distance
and Information Gain as in [24]. This choice has proved
to be beneficial in the presence of changing distributions
in the data. We have tested our framework with different
types of datasets: unbalanced datasets without known concept
drift, artificial datasets with known concept drift and a highly
unbalanced credit card fraud dataset with concept drift.

II. UNBALANCED DATASETS PROBLEM

Learning from unbalanced datasets is a difficult task, since
most learning algorithms are not designed to cope with
a large difference between the number of cases belonging
to different classes [2]. The unbalanced nature of the data
is typical of many applications such as medical diagnosis,
text classification and oil spill detection. Credit card fraud
detection [25], [11], [27] is another well-known instance of
a highly unbalanced problem since (fortunately) the number
of fraudulent transactions is typically much smaller than
legitimate ones.

In the literature, traditional methods for classification with
unbalanced datasets rely on sampling techniques to balance
the dataset [22]. In particular we can distinguish between
methods that operate at the data and algorithmic levels [5].

At the data level, balancing techniques are used as a
pre-processing step to rebalance the dataset or to remove
the noise between the two classes, before any algorithm
is applied. Data level techniques have the advantage of
leaving the algorithms unchanged so that any algorithms
can be tested. A well known technique consists of under
sampling the majority class by removing observations at
random until the dataset is balanced [14]. Undersampling
does not take into consideration any specific information in
removing observations from the majority class, yet it is easy
to implement and to understand.

At the algorithmic level, the classification algorithms
themselves are adapted to deal with the minority class detec-
tion. An example of a classification algorithm designed for
the unbalanced problem is HDDT, which will be discussed
in section IV.

In this paper we will consider only binary classification
tasks with unbalanced class distribution. We will call the

majority class negative (coded as � or 0) and the minority
class as positive (coded as + or 1).

III. HELLINGER DISTANCE

Originally introduced to quantify the similarity between
two probability distributions [28], the Hellinger distance has
been recently proposed as a splitting criteria in decision trees
to improve the accuracy in unbalanced problems [9], [10].
In the context of data streams, it has produced excellent
results in detecting classifier performance degradation due
to concept drift [8], [24].

Let (⇥, Q,�) denote a measure space [19] where P
denotes the set of all probability measures on Q that are
absolutely continuous with respect to a probability measure
�. Consider two probability measures P1, P2 2 P . The
Hellinger distance is defined as:

dH(P1, P2) =

vuut
Z

⇥

 r
dP1

d�
�
r

dP2

d�

!2

d� (1)

Note that dH(P1, P2) does not depend on �. If we re-
place � with a different probability measure with respect to
which both P1 and P2 are absolutely continuous, dH(P1, P2)
remains the same.

For compactness we can rewrite equation 1 as:

dH(P1, P2) =

sZ

⇥

⇣p
dP1 �

p
dP2

⌘2
(2)

In the case of discrete distributions of a countable space
�, the previous formula boils down to the following:

dH(P1, P2) =

sX

�2�

⇣p
P1(�)�

p
P2(�)

⌘2
(3)

Hellinger distance has several properties:
• dH(P1, P2) = dH(P1, P2) (symmetric)
• dH(P1, P2) >= 0 (non-negative)
• dH(P1, P2) 2 [0,

p
2]

dH is close to zero when the distributions are similar and
close to

p
2 for distinct distributions.

IV. HELLINGER DISTANCE DECISION TREES

Starting from equation 3, Cieslak and Chawla [9] derive
a new decision tree splitting criteria based on Hellinger dis-
tance that is skew insensitive. They start from the assumption
that all numerical features are partitioned into p bins, so that
the resulting dataset is made of only categorical variables.
Then for each feature f , they compute the distance between
the classes over all of the feature’s partitions. In the case of a
binary classification problem, where f+ denotes the instances
of the positive class and f� the negatives, the Hellinger
distance between f+ and f� is:

dH(f+, f�) =

vuuut
pX

j=1

 s
|f+j |
|f+|

�

s
|f�j |
|f�|

!2

(4)

where j defines the jth bin of feature f . At each node of
the tree, dH(f+, f�) is computed for each feature and then
the feature with the maximum distance is used to split. The
authors of [9] recommend to leave the tree unpruned and to
use Laplace smoothing for obtaining probabilities from leaf
frequencies. Note that the class priors do not appear explicitly
in equation 4, which means that class imbalance ratio does
not influence the distance calculation.

V. LEARNING FROM UNBALANCED AND DRIFTING DATA
STREAMS

A. Concept drift in data streams
In many real-work application (e.g. intrusion detection),

the data is not available all at once, but it is received over
time in streams of batches (e.g., daily internet usage dumps).
In this scenario, the challenge is to use all the information
up to a specific time step t to predict new instances arriving
at time step t+ 1 [20].

However, the concept to learn can change due to non-
stationary distributions. This problem is known as concept
drift or non-stationary learning [30]. Let us define as ⌦ the
function generating a data stream. For two points in time t
and z such that t 6= z, in the case of concept drift we have
⌦t 6= ⌦z . This means that the assumption that the training
and testing batches come from the same distribution may
not hold. Since ⌦ is usually unknown, we cannot predict a
concept drift. An assumption traditionally accepted in data
mining is that the class distribution remains constant. In
streaming data, class prevalence can instead change over
time, which means that in a stream one class can become
over- or under-represented.

Let us define Xt = {x0, x1, ..., xt} as the set of labeled
observations available at time t, where xi is an n-dimensional
vector. For a new unlabelled instance xt+1 we can train a
classifier � on Xt and predict P (ci|xt+1), the probability
that the instance belongs to class ci.

Using Bayes’ theorem we can write P (ci|xt+1) as:

P (ci|xt+1) =
P (ci)P (xt+1|ci)

P (xt+1)
(5)

Since P (xt+1) is the same for all classes ci we can remove
P (xt+1):

P (ci|xt+1) = P (ci)P (xt+1|ci) (6)

Kelly [23] argues that concept drift can occur from a
change in any of the terms in equation 6, namely:

• P (ci), class priors.
• P (xt+1|ci), distribution of the classes.
• P (ci|xt+1), posterior distributions of class membership.
Change in P (ci) can cause well-calibrated classifiers to

become miscalibrated. A change in the class priors can alter
class distribution to the point of making the distribution
unbalanced. Concept drift due to P (xt+1|ci) affects the dis-
tribution of the observations within the class, but leaves the
class boundary unchanged [20]. When P (ci|xt+1) changes,
there is a change in the class boundary that makes any

previously learnt classifiers biased. The latter is the worst
type of drift, because it directly affects the performance of a
classifier, as the distribution of the features, with respect to
the class, has changed [20].

B. Hellinger distance as weighting ensemble strategy
In evolving data streams it is important to understand

how similar two consecutive data batches are in order to
decide where a model learnt on a previous batch is still
valid. Lichtenwalter and Chawla [24] propose to employ
Hellinger distance as a measure of the distance between two
separate batches. Let us define as Bt the batch at time t used
for training and Bt+1 as the subsequent testing batch. First
numeric attributes are discretized into equal-width bins, then
Hellinger distance between Bt and Bt+1 for a given feature
f is calculated as:

HD(Bt, Bt+1, f) =

vuuut
X

v2f

0

@
s

|Bt
f=v|
|Bt| �

s
|Bt+1

f=v|
|Bt+1|

1

A
2

(7)
where |Bt

f=v| is the number of instances of feature f
taking value v in the batch at time t, while |Bt| is the total
number of instances in the same batch.

Equation 7 does not account for differences in feature
relevance. In general, feature distance should have a higher
weight when the feature is relevant, while a small weight
should be assigned to a weak feature. Making the assumption
that feature relevance remains stable over time, Lichtenwalter
and Chawla [24] suggest to use the information gain to
weight the distances.

For a given feature f of a batch B, the Information Gain
(IG) is defined as the decrease in entropy E of a class c:

IG(B, f) = E(Bc)� E(Bc|Bf) (8)

where Bc defines the class of the observations in batch B
and Bf the observations of feature f .

For the testing batch we cannot compute IG(B, f), as
the labels are not provided, therefore the feature relevance
is calculated on the training batch. The authors define a new
distance function that combines IG and HD as:

HDIG(Bt, Bt+1, f) = HD(Bt, Bt+1, f)⇤(1+IG(Bt, f))
(9)

HDIG(Bt, Bt+1, f) provides a relevance-weighted dis-
tance for each single feature. The final distance between
two batches is then computed taking the average over all
the features.

DHDIG(B
t, Bt+1) =

P
f2Bt HDIG(Bt, Bt+1, f)

|f 2 Bt| (10)

The authors suggest to learn a new model as soon as a new
batch is available and store all the models. The learnt models
are then combined into an ensemble where the weights of the
models are inversely proportional to the batches’ distances.
The lower the distance between two batches the more similar

is the concept between them. In a streaming environment
with concept drift we should expect good performances on
the current batch from models learnt on similar concepts.
With this reasoning in mind, the ensemble weights should
be higher the lower the distances. The authors suggest to
use the following transformation:

weightst = DHDIG(B
t, Bt+1)�b (11)

where b represents the ensemble size.

C. Related work in unbalanced data streams
The online learning problem typical of streaming data has

attracted a lot of attention in research, however little has
been done to tackle the streaming problem where the class
distribution is skewed [20]. Credit card fraud detection is an
example of a data source that suffers from class imbalance.
The number of frauds occurring in each chunk of the stream
is usually less than 1% [12]. As the type of fraudulent activity
can evolve in time, the learning strategy has to adapt to
concept drift. State-of-the-art methods for unbalanced data
streams with concept drift combine ensemble methods with
sampling.

Gao’s framework [16], [17] addresses the unbalanced
problem of a chunk by propagating past minority class obser-
vations and undersampling the majority class. The positive
examples are accumulated along the stream until the they
represent 40% of the observations. When this happens the
oldest positive examples are replaced by the new minority
class observations. This propagation method ignores the sim-
ilarity of the minority class instance to the current concept,
relying only on its similarity in time.

REA [7] and SERA [6] proposed by Chen and He propa-
gate to the last chunk only minority class that belong to the
same concept using Mahalanobis distance and a k-nearest
neighbors algorithm.

With Learn++.NIE [13], Ditzler and Polikar extend their
own Learn++.NSE [15] method for unbalanced datasets.
For each batch they create different balanced subsets using
undersampling and then combine models learnt on each
balanced subset.

Lichtenwalter and Chawla [24] suggest to propagate not
only positives, but also observations from the negative class
which are misclassified in the previous chunk to increase the
boundary definition between the two classes.

Hoens and Chawla in HUWRS.IP [20] adapt HUWRS [21]
for unbalanced streams introducing an instance propagation
mechanism based on a Naı̈ve Bayes classifier. Naı̈ve Bayes
is used to select old positive instances which are relevant
to the current minority class context. This method relies on
finding instances that are similar to the current minority class
context. In some cases of rapid drift, however, such instances
may not be available.

Wang, Minku and Yao [29] propose Sampling-based On-
line Bagging (SOB) to deal with unbalanced data streams.
Their algorithm is essentially a modification of Online
Bagging [26], in which the sampling rate of the instances

belonging to one class is determined adaptively based on the
current imbalance status and classification performance. The
problem with this approach is that it is not designed to handle
concept drifts as it aims to maximize G-mean greedily over
all received examples [29].

VI. EXPERIMENTAL SETUP

Many of the data streaming frameworks for concept drift
and unbalanced data use C4.5 [27] decision tree as the
base learner [21], [20], [24], [16]. In our experiments we
compared the results of C4.5 to the Hellinger Distance
Decision Tree (HDDT) with the parameters suggested in [9]
(unpruned and Laplace smoothing). The comparison is done
using different propagation/sampling methods and model
combinations (ensemble Vs single models).

In an unbalanced data stream, for each batch/chunk,
the positive class examples represent the minority of the
observations. Each batch can be considered as a small
unbalanced dataset, permitting all the techniques already
developed for static unbalanced datasets to be implemented.
In a streaming environment, however, it is possible to collect
minority observations from previous batches to combat the
class skewness. For our experiments we considered instance
propagation methods that assume no sub-concepts within the
minority class. In particular we used Gao’s [16] and Lichten-
walter’s [24] propagation methods presented in section V-C
and two other benchmark methods (UNDER and BL):

• SE (Gao’s [16] propagation of rare class instances and
undersampling at 40%)

• BD (Lichtenwalter’s Boundary Definition [24]: propa-
gating rare-class instances and instances in the negative
class that the current model misclassifies.)

• UNDER (Undersampling: no propagation between
batches, undersampling at 40%)

• BL (Baseline: no propagation, no sampling)
The first two methods can be considered as oversampling

methods since the minority proportion in the batches is aug-
mented. From now on, for simplicity we will call sampling
strategies all the previous instance propagation methods.

For each of the previous sampling strategies we tested:
• HDIG: DHDIG weighted ensemble.
• No ensemble: single classifier.
In the first case, an ensemble is built combining all models

learnt with weights given by equation 11.
In the second case, we use the model learnt in the current

batch to predict the incoming batch. This option has the
advantage of being faster as no models are stored during
the learning phase.

VII. EXPERIMENTAL RESULTS

In all our experiments we reported the results in terms
of AUROC (Area under the ROC curve) as it is de facto
standard in unbalanced problems [4]. The framework was
implemented in Java and we used the Weka [18] implemen-
tation of C4.5 and HDDT.

A. Datasets
In our experiments we used different types of datasets. We

used benchmark UCI datasets [1] to first study the unbal-
anced problem without worrying about concept drift. These
datasets are not inherently sequential and exhibit no concept
drift; we render them as data streams by randomizing the
order of instances and processing them in batches as in [24].
Then we used the MOA [3] framework to generate some
artificial datasets with drifting features to test the behavior
of the algorithms under concept drift. Finally we used a
real-world credit card dataset which is highly unbalanced
and whose frauds are changing in type and distribution.
This dataset contains credit card transactions from online
payment between the 5th of September 2013 and the 25th of
September 2013, where only 0.15% of the transactions are
fraudulent. It was provided by a Belgian payment processor,
but for confidentially reasons we cannot reveal more about
this data.

TABLE I
DATASETS

Name Source Instances Features Imbalance Ratio
Adult UCI 48,842 14 3.2:1
can UCI 443,872 9 52.1:1

compustat UCI 13,657 20 27.5:1
covtype UCI 38,500 10 13.0:1
football UCI 4,288 13 1.7:1

ozone-8h UCI 2,534 72 14.8:1
wrds UCI 99,200 41 1.0:1
text UCI 11,162 11465 14.7:1

DriftedLED MOA 1,000,000 25 9.0:1
DriftedRBF MOA 1,000,000 11 1.02:1
DriftedWave MOA 1,000,000 41 2.02:1
Creditcard FRAUD 3,143,423 36 658.8:1

B. Results
We first tested the different sampling strategies using

HDDT and C4.5. One the left side of Figure 1 we see the
results where DHDIG distance discussed in section V-B is
used to weight the models from different batches according
to equation 11. On the right are the results where only
the model of the current batch is used for prediction. The
columns indicate the batch mean AUROC for each strategy
averaged over all UCI datasets. This means that for each
dataset we computed the mean AUROC over all batches and
then average the results between all datasets. In general we
notice that HDDT is able to beat C4.5. For each sampling
method we see that the ensembles counterpart of the single
models have higher accuracy.

In Figure 2 we display the average computational time. As
expected, when a single classifier is used the framework is
much faster, but it comes at the cost of lower accuracy (see
Figure 1). When UNDER sampling is used in the framework
we have the smallest computational time, as it uses a subset
of the observations in each batch and no instances are
propagated between batches.

Figure 3 shows the results for the datasets with concept
drift generated using the MOA framework. HDIG-based

HDIG No Ensemble

0.00

0.25

0.50

0.75

BD BL SE UNDER BD BL SE UNDER
Sampling

AU
RO

C algo
C4.5
HDDT

Fig. 1. Batch average results in terms of AUROC (higher is better) using
different sampling strategies and batch-ensemble weighting methods with
C4.5 and HDDT over all UCI datasets.

HDIG No Ensemble

0

1000

2000

3000

4000

BD BL SE UNDER BD BL SE UNDER
Sampling

TI
M

E

algo
C4.5
HDDT

Fig. 2. Batch average results in terms of computational TIME (lower
is better) using different sampling strategies and batch-ensemble weighting
methods with C4.5 and HDDT over all UCI datasets.

ensembles return better results than a single classifiers and
HDDT again gives better accuracy than C4.5.

Figure 4 displays the results on the Credit card dataset.
This dataset is a good example of an unbalanced data stream
with concept drift. Once again HDDT is always better than
C4.5, however the increase in performance given by the
ensemble is less important than the one registered with the
UCI datasets. From Figure 4, it is hard to discriminate the
best strategy, as many of the them have comparable results.

Figure 5 shows the sum of the ranks for each strategy over
all the chunks. For each chunk, we assign the highest rank
to the most accurate strategy and then sum the ranks over
all chunks. Let rs,k 2 {1, ..., S} be the rank of strategy s
on chunk k and S be the number of strategies to compare.
The strategy with highest AUROC in k has rs,k = S and
the one with the lowest has rs,k = 1. Then the sum of rank
for the strategy s is defined as

PK
k=1 rk,s, where K is the

total number of chunks. The higher the sum, the higher the
number of times one strategy is superior to the others.

HDIG No Ensemble

0.0

0.2

0.4

0.6

0.8

BD BL SE UNDER BD BL SE UNDER
Sampling

AU
RO

C algo
C4.5
HDDT

Fig. 3. Batch average results in terms of computational AUROC (higher
is better) using different sampling strategies and batch-ensemble weighting
methods with C4.5 and HDDT over all drifting MOA datasets.

HDIG No Ensemble

0.00

0.25

0.50

0.75

1.00

BD BL SE UNDER BD BL SE UNDER
Sampling

AU
RO

C algo
C4.5
HDDT

Fig. 4. Batch average results in terms of AUROC (higher is better) using
different sampling strategies and batch-ensemble weighting methods with
C4.5 and HDDT over Credit card dataset.

The strategy with the highest sum of ranks
(BL HDIG HDDT) combines BL with HDIG ensembles
of HDDTs. BL method leaves the batches unbalanced,
which means that the best strategy is actually the one
avoiding instance propagation/sampling. A paired t-test on
the ranks was then used to compare each strategy with the
best. Based on this test, we saw that the second strategy
having the highest sum of ranks (UNDER HDIG HDDT)
is not significantly worse than the first. Compared to the
first, this strategy implements UNDER sampling at each
batch instead of BL. Figure 5 confirms that HDDT is
better than C4.5. The C4.5 implementation of the winning
strategy (BL HDIG C4.5) is significantly worse than the
best (BL HDIG HDDT). The same happens for the second
best ranking strategy (UNDER HDIG HDDT ranks higher
than UNDER HDIG C4.5).

BL_C4.5
SE_C4.5
BD_C4.5

UNDER_C4.5
BL_HDIG_C4.5

SE_HDDT
SE_HDIG_C4.5
UNDER_HDDT

BL_HDDT
BD_HDIG_C4.5

BD_HDDT
BD_HDIG_HDDT

UNDER_HDIG_C4.5
SE_HDIG_HDDT

UNDER_HDIG_HDDT
BL_HDIG_HDDT

0 100 200

Sum of the ranks

Best significant
FALSE
TRUE

AUROC

Fig. 5. Comparison of different strategies using the sum of ranks in all
chunks for the Credit card dataset in terms of AUROC. In gray are the
strategies that are not significantly worse than the best having the highest
sum of ranks.

VIII. CONCLUSION

To our knowledge, our work is the first to evaluate the
use of the HDDT tree algorithm for streaming data. Many
of the state-of-the-art techniques use the C4.5 algorithm
combined with sampling or instance propagation to balance
the batches before training. We have shown that when used
in data streams, HDDT without sampling typically leads to
better results than C4.5 with sampling. Thus, HDDT can
offer better performance than C4.5, while actually removing
sampling from the process.

The removal of the propagation/sampling step in the
learning process has several benefits:

• It allows a single-pass approach (the observations are
processed as soon as they arrive, avoiding several passes
throughout the batches for instance propagation).

• It reduces the computational cost/resources needed (this
is important since with massive amounts of data it may
no longer be possible to store/retrieve old instances).

• It avoids the problem of finding previous minority
instances from the same concept (in the case of a new
concept in the minority class, it may not be possible to
find previous observations to propagate).

For these reasons we think our framework is more efficient
than state-of-the-art methods for unbalanced data streams.

We have used artificial datasets to test how different
strategies work under concept drift. The use of HDIG as an
ensemble weighting strategy has increased the performances
of the single classifiers, not only in artificial datasets with
known drift (MOA datasets), but even in datasets whose
distribution is assumed to be more or less stable (UCI
datasets).

Finally, we tested our framework on a proprietary dataset
containing credit card transactions from online payment.
This is a particularly interesting dataset, as it is extremely
unbalanced and exhibits concept drift within the minority
class. HDDT performs very well when combined with BL

(no sampling) and UNDER sampling. An important feature
of these basic sampling strategies is the fact that frameworks
implementing them are much faster (see Figure 2) since
no observations are stored from previous chunks. When
these two sampling strategies give comparable results, the
practitioner could prefer UNDER sampling as it is more
memory efficient since it uses a reduced part of the batch for
training. By using undersampling, however, a lot of instances
from the majority class are not considered.

In our experiments we compared our framework with
propagation/sampling methods that consider the minority
class as a single cluster. Future work will investigate prop-
agation methods such as REA, SERA and HUWRS.IP seen
in section V-C that are able to deal with sub-concepts in the
minority class.

REFERENCES

[1] D. N. A. Asuncion. UCI machine learning repository, 2007.
[2] G. Batista, A. Carvalho, and M. Monard. Applying one-sided se-

lection to unbalanced datasets. MICAI 2000: Advances in Artificial
Intelligence, pages 315–325, 2000.

[3] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive
online analysis. The Journal of Machine Learning Research, 99:1601–
1604, 2010.

[4] N. V. Chawla. Data mining for imbalanced datasets: An overview.
In Data mining and knowledge discovery handbook, pages 853–867.
Springer, 2005.

[5] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue
on learning from imbalanced data sets. ACM SIGKDD Explorations
Newsletter, 6(1):1–6, 2004.

[6] S. Chen and H. He. Sera: selectively recursive approach towards
nonstationary imbalanced stream data mining. In Neural Networks,
2009. IJCNN 2009. International Joint Conference on, pages 522–529.
IEEE, 2009.

[7] S. Chen and H. He. Towards incremental learning of nonstationary
imbalanced data stream: a multiple selectively recursive approach.
Evolving Systems, 2(1):35–50, 2011.

[8] D. A. Cieslak and N. V. Chawla. Detecting fractures in classifier
performance. In Data Mining, 2007. ICDM 2007. Seventh IEEE
International Conference on, pages 123–132. IEEE, 2007.

[9] D. A. Cieslak and N. V. Chawla. Learning decision trees for
unbalanced data. In Machine Learning and Knowledge Discovery in
Databases, pages 241–256. Springer, 2008.

[10] D. A. Cieslak, T. R. Hoens, N. V. Chawla, and W. P. Kegelmeyer.
Hellinger distance decision trees are robust and skew-insensitive. Data
Mining and Knowledge Discovery, 24(1):136–158, 2012.

[11] P. Clark and T. Niblett. The cn2 induction algorithm. Machine
learning, 3(4):261–283, 1989.

[12] A. Dal Pozzolo, O. Caelen, S. Waterschoot, and G. Bontempi. Racing
for unbalanced methods selection. In Proceedings of the 14th Inter-
national Conference on Intelligent Data Engineering and Automated
Learning. IDEAL, 2013.

[13] G. Ditzler and R. Polikar. An ensemble based incremental learning
framework for concept drift and class imbalance. In Neural Networks
(IJCNN), The 2010 International Joint Conference on, pages 1–8.
IEEE, 2010.

[14] C. Drummond, R. Holte, et al. C4. 5, class imbalance, and cost
sensitivity: why under-sampling beats over-sampling. In Workshop
on Learning from Imbalanced Datasets II. Citeseer, 2003.

[15] R. Elwell and R. Polikar. Incremental learning of variable rate concept
drift. In Multiple Classifier Systems, pages 142–151. Springer, 2009.

[16] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu. Classifying data streams
with skewed class distributions and concept drifts. Internet Computing,
12(6):37–49, 2008.

[17] J. Gao, W. Fan, J. Han, and S. Y. Philip. A general framework for
mining concept-drifting data streams with skewed distributions. In
SDM, 2007.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[19] P. R. Halmos. Measure theory, volume 2. van Nostrand New York,
1950.

[20] T. R. Hoens and N. V. Chawla. Learning in non-stationary environ-
ments with class imbalance. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pages 168–176. ACM, 2012.

[21] T. R. Hoens, N. V. Chawla, and R. Polikar. Heuristic updatable
weighted random subspaces for non-stationary environments. In Data
Mining (ICDM), 2011 IEEE 11th International Conference on, pages
241–250. IEEE, 2011.

[22] N. Japkowicz and S. Stephen. The class imbalance problem: A
systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[23] M. G. Kelly, D. J. Hand, and N. M. Adams. The impact of changing
populations on classifier performance. In Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 367–371. ACM, 1999.

[24] R. N. Lichtenwalter and N. V. Chawla. Adaptive methods for
classification in arbitrarily imbalanced and drifting data streams. In
New Frontiers in Applied Data Mining, pages 53–75. Springer, 2010.

[25] L. Olshen and C. Stone. Classification and regression trees. Wadsworth
International Group, 1984.

[26] N. C. Oza. Online bagging and boosting. In Systems, man and
cybernetics, 2005 IEEE international conference on, volume 3, pages
2340–2345. IEEE, 2005.

[27] J. R. Quinlan. C4. 5: programs for machine learning, volume 1.
Morgan kaufmann, 1993.

[28] C. R. Rao. A review of canonical coordinates and an alterna-
tive to correspondence analysis using hellinger distance. Questiió:
Quaderns d’Estadı́stica, Sistemes, Informatica i Investigació Opera-
tiva, 19(1):23–63, 1995.

[29] S. WANG, L. L. MINKU, and X. YAO. Online class imbalance
learning and its applications in fault detection. International Journal
of Computational Intelligence and Applications, 12(04), 2013.

[30] I. Zliobaite. Learning under concept drift: an overview. Technical re-
port, Overview, Technical report, Vilnius University, 2009 techniques,
related areas, applications Subjects: Artificial Intelligence, 2009.

