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Abstract. We propose a new approach to detect credit card fraud based
on suspicious payment patterns. According to our hypothesis fraudsters
use stolen credit card data at specific, recurring sets of shops. We ex-
ploit this behavior to identify fraudulent transactions. In a first step we
show how suspicious patterns can be identified from known compromised
cards. The transactions between cards and shops can be represented as
a bipartite graph. We are interested in finding fully connected subgraphs
containing mostly compromised cards, because such bicliques reveal sus-
picious payment patterns. Then we define new attributes which capture
the suspiciousness of a transaction indicated by known suspicious pat-
terns. Eventually a non-linear classifier is used to assess the predictive
power gained through those new features. The new attributes lead to
a significant performance improvement compared to state-of-the-art ag-
gregated transaction features. Our results are verified on real transaction
data provided by our industrial partner5.
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1 Introduction

In today’s world payments are often effected electronically. Instead of cash, peo-
ple use credit and debit cards for payments at the point of sale (POS) and can di-
rectly issue purchases on shopping websites using their card data (E-commerce).
However the rise of electronic financial transactions has led to new crime pat-
terns: fraudsters try to misuse the data of legitimate persons to effect payments
in their name. Therefore payment processors employ detection techniques to
identify fraudulent transactions.

Historically fraud detection is carried out within rule-processing systems
where fraudulent transactions are detected if they fulfill certain criteria, e.g.
issued at a specific shop at a specific time of a day. The rules of these systems

5 Worldline http://www.worldline.com
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are crafted manually by human experts or generated by rule learning algorithms
[12]. More sophisticated systems use supervised learning to build classification
models which learn to identify fraud from known fraudulent transactions in the
past [4].

In the best case a fraudulent transaction is immediately detected and rejected
by the system. However, even after acceptance of a fraudulent transaction it is
useful to detect it because the fraudster is likely to reuse the same card data for
further transactions until the card is blocked. Finding compromised cards be-
comes easier with each further fraudulent transaction from the card in question,
under the condition that detection techniques are not solely analyzing individual
transactions. Therefore, feature aggregates built from the transaction history of
a credit card are heavily used to improve fraud detection in rule-based systems
as well as machine learning approaches [17].

The historical rule based approach has the advantage that it allows human in-
vestigators to adapt detection systems according to very specific fraud scenarios.
The full expertise of the investigator results in very targeted fraud detection with
few false alerts. On the other hand non-linear models such as neural networks
are not transparent in regard to how they decide on the label of a transaction,
but they are able to find hidden meaning in the data, that investigators are not
aware of.

In this work we combine the advantages of historical rule learning and non-
linear models to outperform existing fraud detection methods. For this purpose
we feed the pattern-indicated “suspiciousness” of a transaction into a non-linear
classifier. This additional information boosts the classifier performance by 20%
in terms of area under precision-recall-curve (AUCPR).

To provide an example assume that we find in historical data that some fraud-
sters tend to issue their fraudulent transactions always at the shops {E,F,G}.
After further investigation we find out that actually 50% of the cards which
have made a transaction at all the shops {E,F,G} are compromised. The pat-
tern {E,F,G} is therefore highly suspicious—We have identified an anomaly
which can be used to find further fraud cases. Therefore we not only provide
classical transaction features such as amount and timestamp to our non-linear
model but in addition whether the card is used according to a known suspicious
pattern. We show that this combined approach leads to a significant performance
increase. A similar approach has been applied to identify companies which might
go bankrupt deliberately in order to avoid taxation [16]. We extend and adapt
the core ideas from this work to the domain of credit card fraud and show that
the relationships between cards and card acceptors similarly carry information
indicating which cards might be under the control of a fraudster.

Regarding the structure of this paper we first give a detailed description
of our contribution (Section 2). Subsequently we explain the preprocessing and
augmentation of our data based on existing scientific work (Section 3). Then we
describe the concrete experimental setup (Section 4) for testing our contribution.
Finally we report our results (Section 5) before drawing a conclusion (Section
6).
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2 Pattern Suspiciousness

Our contribution is based on the hypothesis that compromised credit cards can
be identified by inspecting the patterns of card acceptors, e.g. shops, at which
they have been used [6]. A pattern is for example “card x has been used in the
shops {E,F,G}” (See definitions 1 and 2).

Definition 1. Pattern: Unordered set of acceptors containing at least 2, and at
most n, elements, where n is the maximally allowed pattern size. We require that
a pattern consists at least of 2 acceptors.

Definition 2. Pattern match: A credit card c matches a pattern at moment t
if all acceptors of the pattern appear in the transaction history T[t−∆t,t] of c. ∆t
denotes a time difference.

Definition 3. Pattern support: The absolute number of cards which match a
given pattern.

With techniques originating from the domain of association rule mining we
can identify frequent patterns [1] in the transaction data, i.e. patterns that are
common among multiple credit cards. We aim to compute the suspiciousness of
such patterns by counting how many of the matching cards are compromised.
The underlying assumption is that a pattern which is highly exposed to fraud in
the past can be used to detect fraud on future transactions. Thus our approach
requires a database of patterns and their suspiciousness. However, we do not
want to use the suspicious patterns directly to detect fraudulent cards. Instead
we incorporate this information in newly defined transaction features and build
a model which also takes into account all other given information to detect
fraudulent transactions.

When a new transaction arrives we evaluate whether we recognize a pattern
from the database in the transaction history of the card. Then we augment the
new transaction with information about the matching patterns’ suspiciousness.

2.1 Pattern Enumeration and Scoring

To derive suspiciousness scores for each pattern we need to look at the cards
which match the patterns in our historical data. A higher number of compro-
mised cards indicate a higher pattern suspiciousness. For this purpose we intro-
duce the definition of a biclique which incorporates a pattern and all its matching
cards. We can conclude that for each pattern a corresponding biclique exists and
vice versa. The biclique definition relies on a graph representation of the data
in which the acceptors form a first and the credit cards a second vertex type.
A credit card can be linked to an acceptor by a transaction. An example for
a biclique is depicted in Figure 1. The representation of a bipartite graph to
find suspicious bicliques has already been applied successfully in the domain
of bankruptcy fraud, i.e. predicting which companies might go bankrupt delib-
erately in order to avoid taxation by analyzing the business partners of those
companies [16].
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Fig. 1. Example transaction graph to demonstrate the hypothesis of suspicious ac-
ceptor patterns. Red long-dashed edges represent fraudulent transactions, blue dotted
edges represent genuine transactions. The depicted pattern {E,F,G} is suspicious as
two out of three (= 66%) of its matching cards are compromised (i.e. have fraudulent
transactions).

Definition 4. Bipartite graph: Let G = (N,E) denote a graph consisting of the
vertices N and edges E. G is bipartite if N can be divided into two sets U and
V such that every edge has one endpoint in U and one endpoint in V .

Definition 5. Biclique: Let G = (V ∪U,E) denote a bipartite graph. A subgraph
(V ′ ∪ U ′, E′) of G is called a biclique if V ′ ⊆ V,U ′ ⊆ U,E′ ⊆ E and for every
u ∈ U ′ and v ∈ V ′, {u, v} ∈ E′.

The patterns’ suspiciousness is directly expressed through the ratio of com-
promised cards among all cards in its corresponding biclique. The biclique de-
picted in Figure 1 contains three cards out of which two are compromised because
they have fraudulent transactions. Therefore the suspiciousness score of this bi-
clique is 0.66. In addition to the biclique fraud ratio we store the pattern size
and the number of matching cards in the pattern database for later use.

Algorithmically the bicliques are identified in two consecutive steps. First, we
identify candidates for suspicious patterns only taking into account compromised
cards. In a second step we generate full bicliques from those candidates, now
taking into account all cards. The first step can be performed by any appropriate
frequent pattern mining algorithm such as the apriori-algorithm [2]. In the second
step the bicliques are created by identifying the common cards of each acceptor
pattern, which is equivalent to a set intersection operation for each pattern [11,
chap. 10.3.3].

The time complexity of enumerating all maximal bicliques based on frequent
itemset mining can be reduced to O(mnN), where m is the number of edges
in the graph (credit card transactions), n the number of vertices (cards and
acceptors) and N the number of maximal bicliques [9]. The apriori algorithm
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does not achieve this complexity but has proven to be adequately efficient for
our experiments.

2.2 Feature Aggregation

At this point we have identified suspicious patterns on historical transaction
data and quantified this suspiciousness in terms of pattern features. In the next
step these pattern features will be used to find compromised cards in a target
dataset with unknown labels. Therefore the cards in this distinct dataset must
be augmented with the pattern information.

We verify for each card which patterns it matches and derive new features
from the matched patterns: the number, the mean and the maximum suspicious-
ness among them. In the domain of credit card fraud we suspect that patterns
having the maximum suspiciousness are most important for detecting future
fraud. Therefore we add more information about these most suspicious patterns
to the new card features: the number of acceptors (pattern size) and the number
of matching cards (pattern support). The five new features are summarized in
Table 1.

Table 1. Newly proposed pattern features. Each transaction is augmented with these
five attributes to achieve a better predictive performance.

attribute explanation

pattern count number of patterns matched by the card
mean suspiciousness of all matching patterns
max suspiciousness score of most suspicious matching pattern
max suspicious pattern’s size size of m. s. matching pattern
max suspicious pattern’s support supporting cards of m. s. matching pattern

3 Real Data and Preprocessing

To assess our approach we use a real-world transaction dataset from our indus-
trial partner. The dataset contains POS and E-commerce-transactions. Each day
of data comprises on average 517, 569.7 transactions with a standard deviation
of 59902.9. Out of these transactions on average 0.152% are fraudulent with a
standard deviation of 0.040%.

The dataset provides 21 intrinsic transaction features. Those comprise nom-
inal identifiers of transactions, cards and acceptor and more information related
to these entities: for example the transaction amount, the timestamp of the trans-
action and the merchant category. These attributes are common in the domain
of fraud detection [13, 12].

A classifier which is only trained on intrinsic attributes is likely to achieve
a poor predictive performance. Therefore we augment the given attributes with



6 Fabian Braun et al.

aggregated new features, which have proven to enhance the prediction perfor-
mance in other scientific work [3]. The authors derive information on how often
the card was used in a similar manner before the current transaction. For ex-
ample they add the number of transactions issued at the same shop in the past
and the average transaction amount of recent payments.

Another approach [5, chap. 5.1.3] computes the risk of discrete attribute
values of being associated to fraud transactions, e.g. the risk that a specific
acceptor is used for a fraud transaction. In this work transactions are merged
with the risk scores associated with their attribute values.

In total a set of 45 transaction features is used to obtain a baseline perfor-
mance score for a state-of-the-art fraud detection model. These consist of basic
features being intrinsic to each transaction (amount etc.), aggregated card fea-
tures [3] and risk scores [5, chap. 5.1.3] for all categorical attributes in our data.
As the data used for the referenced work is not publicly available we have fully
reimplemented their work to augment our data with the same attributes.

4 Experimental Setup

To estimate the predictive performance gain we compare the performance of a
model trained on a state-of-the-art dataset with the performance reached when
adding our newly proposed features (Table 1). We choose a random forest model
because it is a standard and well-performing model in the domain of fraud de-
tection [3, 6]. It allows the construction of sophisticated performance metrics
because it is capable of returning class likelihoods instead of hard labels. We
use random undersampling for training the random forest model such that each
training set contains 1500 fraudulent transactions and 13500 genuine transac-
tions to address the imbalance in the data. We choose a sampling ratio of 10% to
compare to [3]. This technique performs well in conjunction with random forest
models [15]. A random forest model requires two parameters: we fix the number
of trees at 501 and leave the number of split candidate variables at

√
p, where

p is the number of transaction attributes in the training set—a common default
setting [10]. No further tuning of the parameters is required as we want to com-
pare the performance of multiple random forests trained on different attribute
subsets rather than producing one highly tuned classifier. For the performance
measures requiring hard labels we set a static cutoff threshold of 0.75, i.e. if a
transaction is voted to be fraudulent by less than 75% of the trees, it is classified
as genuine.

For computing the newly proposed pattern features we restrict the size of the
acceptor patterns to two to six. Patterns of size one (i.e. individual acceptors) are
already incorporated in the acceptor risk score [5]. Patterns of larger sizes than
six are ignored because they would require that a fraudster issues more than six
transactions at different acceptors before they can be detected. Additionally we
require that each pattern is matched by at least 4 compromised cards to ensure
a minimum evidence for a suspiciousness score (minimum absolute support). In
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summary we only assess bicliques consisting of two to six acceptors and at least
four cards.

Another parameter is the size of the time-window ∆t from which we derive
frequent patterns. We choose a window of five days, relying on the fact that
fraudsters try to issue their payments within a short time-frame before the card
of the customer is blocked. A larger window could be an interesting subject for
future research, because the acceptors used by the legitimate cardholder might
also carry important information because in many cases one of those acceptors
is the source of the data breach.

4.1 Data Splits

When evaluating our approach we have to be careful about setting up training
and test data. The risk score [5] and the newly introduced pattern features
require the labels of historical transactions as input which might lead to a biased
model when the same transactions are used for training. To ensure that this does
not occur we split data into three sets: feature learning set, training set and test
set. Additionally we want to assess how good the model behaves in a temporal
context, i.e. learning on past transactions for predicting future transactions.
Therefore we split based on the timestamp of transaction acceptance. We use
five days of transaction data for learning suspicious patterns and risk scores.
The subsequent five days of data are used for training the random forest model.
Finally we test this model on the subsequent day of data (See Figure 2). To
obtain statistically sound results we generate 40 different learning, training and
test sets from our data.

In fraud detection it is trivial to predict the label of transactions once we
know that a card is compromised. To avoid an overoptimistic estimate of the
performance we remove transactions from known compromised cards from sub-
sequent splits. For example when a card already has a fraudulent transaction in
the training set, its transactions are removed from the test set.

4.2 Performance Measures

The choice of adequate performance indicators is highly influenced by the class
imbalance of the fraud detection problem. Standard measures as prediction ac-
curacy and area under ROC-curve (AUC) [14] are not suitable because negative
and positive instances contribute equally to them while in unbalanced problems
the positive class should be emphasized [17].

We base our conclusions on precision and recall which focus on the fraudulent
class. In the fraud domain the precision shows how many transactions might be
reported erroneously by the model. The recall captures how many fraudulent
transactions are completely missed by the system and are eventually detected
by the cardholder in their account statement.

Additionally we use the area under precision-recall-curve (AUCPR) as a
cutoff-independent measure, which is better suited to imbalanced problems than
the classical AUC [7]. The precision among the top-k-ranked alerts is another
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Fig. 2. The transaction dataset is split into three parts: a feature learning dataset,
a training set and a test set. The first is used to learn which acceptors patterns are
suspicious. The second is used to train a model and the third to test its predictive
performance. To avoid reporting already known compromised cards, those are removed
from subsequent splits.

Table 2. Performance of classifiers: row 1, 3 our baseline; row 2, 4 baseline + con-
tributed features. We report the average performance and std. deviation obtained from
40 different learning-training-test cycles.

model, attributes precision prec. at k recall AUCPR accuracy AUC

random forest
baseline

0.333± 0.11 0.381± 0.09 0.418± 0.10 0.323± 0.10 0.999 0.971

random forest
+ contribution

0.371± 0.11 0.419± 0.09 0.444± 0.11 0.387± 0.10 0.999 0.971

logistic regression
baseline

0.072± 0.04 0.129± 0.10 0.338± 0.10 0.072± 0.056 0.995 0.942

logistic regression
+ contribution

0.095± 0.05 0.183± 0.11 0.406± 0.11 0.103± 0.071 0.996 0.944

meaningful performance indicator in fraud detection [5, 3]. We fix the parame-
ter k at the number of positive instances in the test set such that a score of 1
indicates perfect prediction.

5 Results

As a first result we observe in Table 2 that our baseline performance differs from
what is reported in other scientific work6, although our dataset contains the same
and more features. Our precision is higher, while the recall is lower, i.e. the alerts
of our model are more accurate, but it detects less fraudulent transactions. This
may be caused by our experimental setup which is oriented towards a real-world
scenario in which we use past data to predict future fraud. The differences may
also originate from unknown deviations between the used datasets and model
parameters.

6 [3, Table 6c, 7c] reports for another dataset a precision of 0.233, a precision at k of
0.494, a recall of 0.747, an accuracy of 0.987 and an AUC of 0.934.
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Looking at our random forest classifier we observe that the new pattern
features lead to an average performance improvement of 0.064 in AUCPR. On
average the area grows by 20%. In the cycle of largest absolute performance
improvement the AUCPR grows from 0.157 to 0.357, while in other cycles there is
no significant improvement in performance. This indicates that the importance of
the new features changes between the different time windows of data. Generally
the mean deviation of the performance measurements is high compared to the
performance difference between the models. Therefore we apply the Friedman-
Nemenyi test [8] on the performance results. For a significance level of α = 0.05
the test confirms that the newly proposed pattern features significantly improve
the performance regarding all different performance measures reported in Table
2. A logistic regression classifier confirms the positive effect of the new features,
although performing generally worse than the random forest model.

The performance fluctuation demonstrates the concept drift in the data, i.e.
the constant change in the payment behavior of fraudsters. For some days the
task of identifying fraudulent transactions can be simple while it becomes more
challenging on other days. Likewise for some days fraudsters might act according
to previously identified patterns while on others they change their habits and the
patterns lose their explanatory power. During the experiments we observe that
the generation of suspicious patterns leads to more than 300 patterns for some
time windows of data and sometimes only to around 50. We presume that by
storing all previously found patterns in a database and only re-estimating their
suspiciousness for new time windows could further improve the performance.

6 Conclusion

We have investigated a pattern-based approach to identify fraud among financial
transactions. It is common knowledge that the individual transactions of ongo-
ing fraud can seem entirely unsuspicious. The fraudulent activity only becomes
evident once the full sequence of transactions is analyzed. In this work we incor-
porate pattern information in the form of new attributes into a classical machine
learning model and show that the predictive performance improves significantly.
The area under precision-recall-curve grows on average by 20% when compared
to a state-of-the-art baseline. This result shows that fraudsters tend to use com-
promised cards at the same set of card acceptors over and over again. This
knowledge can be exploited to detect fraud more reliably through generating a
database of suspicious acceptor patterns.

Our approach can of course be used to reveal suspicious acceptor patterns,
but it can also be used in a wider sense too. It can for example be extended to
suspicious patterns of point of sale locations or any other categorical transaction
attributes. First experiments into this direction based on the merchant category
code show promising results.

While looking at several transactions to detect fraud increases the detection
performance it has one drawback: compromised cards are only detected once
they have been used for transactions at all acceptors in a suspicious pattern. In
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practice that means that a fraudster is able to issue multiple transactions before
the fraud is detected. However, this drawback comes rather from the nature
of fraud—Human experts have found that it is in most of the fraud scenarios
impossible to detect them on the first fraudulent transaction.
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