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Abstract. The K-armed bandit problem is a well-known formalization
of the exploration versus exploitation dilemma. In a K-armed bandit
problem, a player is confronted with a gambling machine with K arms
where each arm is associated to an unknown gain distribution and the
goal is to maximize the sum of the rewards. One of the simplest policies
for this bandit problem is the greedy policy which keeps a gain esti-
mation of the arms and at each round greedily chooses the arm which,
on average, performed the best so far. This paper defines and gives an
analytical definition of the expected gain of a greedy action µg and stud-
ies its evolution over the time. If the gambling machine has two arms,
we derive an optimal exploration algorithm for the two arms case and
we show that the evolution of µg under an exploitation greedy policy is
upper-bounded. Otherwise if the player is confronted with a gambling
machine with more than two arms we show experimentally that the µg

evolution is much more complex and that the value of µg can decrease.
Our results confirm analytically and experimentally that exploitation
before acquiring enough knowledge on the arms is a bad practice.

In this paper, we study the well-known K-armed bandit problem, first intro-
duced by Robbins [6]. In this learning problem, a casino player has to decide
which arm of a K-slot machine to pull to maximize the total gain in a series
of rounds. Each of the K arms of the slot machine returns a reward which is
randomly distributed and unknown to the player. The player has to define a
sequential selection policy on the basis of limited knowledge about the reward
distributions which derive exclusively from previous results.

The K-armed bandit problem is a classical instance of situations involving a
exploration/exploitation trade-off. An example of such a situation is the design
of clinical trials to assess and compare a set of new medical treatments [4]. Here,
the goal is to determine the best treatment while minimizing the inconveniences
for the patients. Another example is the business problem of selecting the best
supplier on the basis of incomplete information [2].

Several approaches have been proposed in literature to deal with the K-armed
bandit problem. In this paper, we will focus on semi uniform algorithms [7].
A semi uniform algorithm is characterized by the alternation of two working
modes, namely the exploration mode and the exploitation mode. The simplest
semi uniform algorithm is the greedy policy in which the player keeps an updated



estimation of the gains of the arms and at each round greedily chooses the arm
which, on average, performed the best so far. If the player adopts the greedy
policy, we say that he adopts a pure exploitation policy. This means that he uses
current knowledge to select the seemingly best arm without reserving any time
to explore what seems to be inferior arms. Exploitation is the right thing to do
to maximize the short term gain of an action and exploration is the right thing
to do to maximize gain in long term.

A possible alternative to pure exploitation is the ǫ-greedy policy [8] which
preserves a fixed fraction of the time, e.g., quantified by a parameter ǫ, to perform
random uniform selection. A variant of the ǫ-greedy is the ǫ-decreasing-greedy
policy where the exploration rate is set initially to a high value and then gradu-
ally decreases. For specific conditions on the initial parameters of ǫ-decreasing-
greedy, Auer et al. in [1] found an upper decreasing bound on the probability
of selecting a sub-optimal arm. This means that after enough rounds, a player
adopting the ǫ-decreasing-greedy policy has a high probability of always playing
the best arm.

The probability that a greedy action selects the true best arm is well-known
in simulation literature as the probability of correct selection (PCS) [5]. In that
case the issue is to decide how many simulation trials should be conducted if we
want to have a certain guarantee that the correct selection will be accomplished.
In [3], we propose to use the PCS notion as a founding principle of a sequential
strategy and as a measure of the effectiveness of an exploration step. In this
paper, we extend existing work by (i) extending the notion of PCS to the notion
of expected greedy reward and (ii) studying the behavior of the evolution in the
time of this expected greedy reward.

This paper is structured as follows : Section 1 defines formally the bandit
problem and the greedy action. An analytical definition of the expected greedy
reward is given in Section 2 and the behavior of its evolution is studied in
section 3.

1 The bandit problem

This section formally defines the K-armed bandit problem and introduces the
notations used in this paper.

A K-armed bandit problem can be modeled by a set z# = {zk}, k = 1, . . . ,K
of K random rewards1 zk with mean µk and standard deviation σk. Suppose
that the goal of the player is to maximize the collected rewards. Once fixed the
duration of the game to H rounds, at each round l, l = 1, . . . ,H the player is
expected to select an arm out of the K alternatives. Let N(l) = [n1(l), . . . ,nK(l)]
be a counting vector whose kth term denotes the number of times that the kth

arm was selected during the l first rounds and Zk(l) =
[
z
1
k, z

2
k, z

3
k, . . . , z

nk(l)
k

]

be the vector of identically and independently distributed observed rewards of
the arm k up to time l.

1 We use boldface symbols to denote random variables.



Based on the samples in the set {Zk(l)} , k = 1, . . . ,K and following a policy,

the player selects iteratively one arm k̂ at each round l. We define (i) the observed

state ŝ(l) ∈ Ŝ of the game at the lth round as the whole set of observations

{Zk(l)}, k = 1, . . . ,K and (ii) the policy as a function π̂ : Ŝ → {1, . . . ,K} which

returns for each state ŝ the arm k̂.
Two common adopted strategies are the pure random policy and the greedy

policy. The pure random policy neglects any partial information about the state
at time l and returns a selection

k̂r = π̂(ŝ(l)) ∼ Uni(1/K, . . . , 1/K)

sampled according to an uniform distribution.
The greedy policy uses instead the information contained in ŝ(l) and returns

k̂g = arg max µ̂k(l)

where µ̂k(l) is the sampled average of the vector Zk(l).

2 An analytical definition of the expected greedy reward

This section introduces and gives an analytical definition of the expected gain of

a greedy exploitation action µg. Since Zk(l) is a realization of a random vector,

the state ŝ and the output k̂ = π̂(ŝ) of the policy are random realizations too.
At round l it is then possible to associate to a policy the expected gain IE

[
µ
k̂

]

which quantifies the gain caused by the policy adoption at round l. Note that
µ
k̂

is a random variable which denotes the mean of the arm k̂ selected at the lth
step.

Let
Pk̄(l) = Prob

{
arg max µ̂k(l) = k̄

}
(1)

be the probability that a greedy algorithm selects arm k̄ at the lth step. The
expected gain of a greedy exploitation action at round l is then defined as follows

IE
[
µ
k̂

]
=

K∑

k=1

Pk(l) · µk = µg. (2)

Note that µg < µk∗ where k∗ = arg maxk µk. Theorem 1 will show that an
analytical expression of the probability Pk̄ of selecting the k̄ machine in a greedy
strategy can be derived in case of a bandit problem with normally distributed
arms.

Theorem 1.

Let z# = {z1, . . . , zK} be a set of K > 1 normal reward distributions zk ∼
N [µk, σk] with mean µk and standard deviation σk. If the selection policy is

greedy then the probability of selecting zk̄ is

Pk̄ = Prob
{

r̂1 > 0 , . . . , r̂k̄−1 > 0 , r̂k̄+1 > 0 , . . . , r̂K > 0
}



where
(
r̂1, . . . , r̂k̄−1, r̂k̄+1, . . . , r̂K

)T
follows a multivariate normal distribution

(
r̂1, . . . , r̂k̄−1, r̂k̄+1, . . . , r̂K

)T
∼ N [Γ,Σ]

with mean

Γ =




µk̄ − µ1

...

µk̄ − µk̄−1

µk̄ − µk̄+1
...

µk̄ − µK




,

and covariance matrix Σ

Σ =



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σ2
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+

σ2
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. . .

...
σ2

k̄

nk̄
· · ·

σ2

k̄

nk̄

σ2

k̄

nk̄
· · ·

σ2

k̄

nk̄
+

σ2
K

nK




where nk is the number of observations of zk.

Proof. According to (1), Pk̄ is the probability that µ̂k̄ is the maximum in
{µ̂1, . . . , µ̂K} :

Pk̄ = Prob
{
k̂g = k̄

}

= Prob

{
k̄ = arg max

k∈[1...K]
{µ̂k}

}

= Prob
{

µ̂k̄ > µ̂1 , . . . , µ̂k̄ > µ̂k̄−1 , µ̂k̄ > µ̂k̄+1 , . . . , µ̂k̄ > µ̂K

}

= Prob
{

r̂1 > 0 , . . . , r̂k̄−1 > 0 , r̂k̄+1 > 0 , . . . , r̂K > 0
}

,

where r̂k = µ̂k̄ − µ̂k. It follows that Pk̄ denotes also the probability that all the

components of the vector
(
r̂1, . . . , r̂k̄−1, r̂k̄+1, . . . , r̂K

)T
are positive. Under the

assumption of Gaussianity, this vector is a multivariate normal random variable



r̂1

...
r̂k̄−1

r̂k̄+1
...

r̂K




=




µ̂k̄ − µ̂1
...

µ̂k̄ − µ̂k̄−1

µ̂k̄ − µ̂k̄+1
...

µ̂k̄ − µ̂K




∼ N [Γ,Σ]



with mean vector

Γ =




µk̄ − µ1

...
µk̄ − µk̄−1

µk̄ − µk̄+1
...

µk̄ − µK




,

and covariance matrix

Σ =




σ2
r̂1 ,̂r1

· · · σ2
r̂1 ,̂rk̄−1

σ2
r̂1 ,̂rk̄+1

· · · σ2
r̂1 ,̂rK

...
. . .

...
...

...
σ2
r̂k̄−1 ,̂r1

· · · σ2
r̂k̄−1 ,̂rk̄−1

σ2
r̂k̄−1 ,̂rk̄+1

· · · σ2
r̂k̄−1 ,̂rK

σ2
r̂k̄+1 ,̂r1

· · · σ2
r̂k̄+1 ,̂rk̄−1

σ2
r̂k̄+1 ,̂rk̄+1

· · · σ2
r̂k̄+1 ,̂rK

...
...

...
. . .

...
σ2
r̂K ,̂r1

· · · σ2
r̂K ,̂rk̄−1

σ2
r̂K ,̂rk̄+1

· · · σ2
r̂K ,̂rK




Now, since µ̂i and µ̂j are independent for i 6= j

σ2
r̂j ,̂rj

= Var
(
µ̂k̄ − µ̂j

)
=

σ2
k̄

nk̄

+
σ2

j

nj
,

it follows that

σ2
r̂i ,̂rj

= σ2
r̂j ,̂ri

= cov
[
µ̂k̄ − µ̂i, µ̂k̄ − µ̂j

]

= IE
[
(µ̂k̄ − µ̂i − IE[µ̂k̄ − µ̂i]) ·

(
µ̂k̄ − µ̂j − IE

[
µ̂k̄ − µ̂j

])]

= IE
[
(µ̂k̄)2

]
− µ2

k̄

=
σ2

k̄

nk̄

.

⊓⊔

3 The evolution of the expected greedy reward

A major difficulty of the bandit problem is the dynamic and multivariate nature
of the terms involved in the definition of optimal policy. For this reason, it is
important to study how the expected reward of a greedy action µg (2) changes
with time.

Our analysis will be made in two parts. In the first one we assume that z#

contains only two arms where k∗ is the index of the best arm and k̄∗ is the other
index. This is the simplest case and some analytical results can be derived about
the evolution in time of µg. The second part will analyse the most complex case,
i.e. when K > 2.



3.1 The evolution of µg in the case where K = 2

First, we assume that the bandit machine has two arms. Theorem 2 shows that
if K = 2 then testing z1 or z2 at round l will, in both cases, improve the value
of µg at round l + 1. Theorem 3 proposes an optimal exploration policy which
maximizes µg at round l + 1. Note that by definition, µg < µk∗ . Theorem 4
shows that the evolution of µg of any strategy which always tests the same arm
is upper-bounded by a value ub∞ which is smaller than µk∗ . This is an argument
in favor of exploration.

Theorem 2. Let K = 2 and µl+1
g (k) be the next expected reward of a greedy

action when arm k is tested at round l. Then

∀k ∈ {1, 2} , µl+1
g (k) > µg.

Proof. ∀k ∈ {1, 2} , µl+1
g (k) > µg if and only if ∀k ∈ {1, 2} , P l+1

k∗ (k) > Pk∗

where P l+1
k∗ (k) is the probability of selecting the best alternative through a pure

greedy algorithm at round l + 1 if zk is tested at round l.

By definition

Pk∗ = Prob {µ̂k∗ − µ̂k̄∗ > 0}

and, under the assumption of Gaussianity,

(µ̂k∗ − µ̂k̄∗) ∼ N

(
µk∗ − µk̄∗ ,

σ2
k∗

nk∗

+
σ2

k̄∗

nk̄∗

)
.

The mean of the Gaussian is positive. Reducing the variance of (µ̂k∗ − µ̂k̄∗) will
improve the Pk∗ at round l + 1 (see fig. 1). Testing zk∗ or zk̄∗ will both reduce
the variance of (µ̂k∗ − µ̂k̄∗), this proves the proposition. ⊓⊔

Theorem 3. Let us consider a bandit problem with two normal arms z# =
{zk1

, zk2
}. The following policy





if N∆ < 0 then test zk1

if N∆ > 0 then test zk2

if N∆ = 0 then test either zk1
or zk2

will maximize µg at round l + 1 where

N∆ = nk1
· (nk1

+ 1) ·
(
σ2

k2
− σ2

k1

)
+ σ2

k1
· (nk2

+ nk1
+ 1) · (nk1

− nk2
) .

Proof. If
[
µl+1

g (k1) − µl+1
g (k2)

]
is positive then z1 must be tested to maximize

µg at round l+1 and if
[
µl+1

g (k1) − µl+1
g (k2)

]
is negative then z2 must be tested.
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Fig. 1. If K=2, the probability of selecting the best random variable Pk∗ is the surface
under the Gaussian when the abscissa takes his value in the set [0, +∞]. Note that the
mean of the Gaussian is always positive.

µl+1
g (k1) − µl+1

g (k2)

= P l+1
k∗ (k1) · µk∗ + P l+1

k̄∗
(k1) · µk̄∗ − P l+1

k∗ (k2) · µk∗ − P l+1
k̄∗

(k2) · µk̄∗

=
[
P l+1

k∗ (k1) − P l+1
k∗ (k2)

]
· µk∗ +

[
P l+1

k̄∗
(k1) − P l+1

k̄∗
(k2)

]
· µk̄∗

=
[
P l+1

k∗ (k1) − P l+1
k∗ (k2)

]
· µk∗ −

[
P l+1

k∗ (k1) − P l+1
k∗ (k2)

]
· µk̄∗

=
[
P l+1

k∗ (k1) − P l+1
k∗ (k2)

]
· (µk∗ − µk̄∗)

= ∆Pk∗ · (µk∗ − µk̄∗) .

Since (µk∗ − µk̄∗) > 0, the sign of
[
µl+1

g (k1) − µl+1
g (k2)

]
is the same as the

sign of ∆Pk∗ .

Let Vark1

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
and Vark2

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
be respectively the vari-

ance of
(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
at l + 1 if either zk1

or zk2
is tested at l. ∆Var is defined

as the difference between the two variances at l + 1. A reduction of the variance

of
(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
improves the probability of selecting the best random variable



zk∗ . The sign of ∆Var is thus the opposite of the sign of ∆Pk∗ .

∆Var = Vark1

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)
− Vark2

(
µ̂

l+1
k∗ − µ̂

l+1
k̄∗

)

=
σ2

k1

nk1
+ 1

+
σ2

k2

nk2

−
σ2

k1

nk1

−
σ2

k2

nk2
+ 1

=
N∆

D∆

where

N∆ = nk2
nk1

(nk2
+ 1) σ2

k1
+ (nk1

+ 1) nk1
(nk2

+ 1) σ2
k2

− (nk1
+ 1) nk2

(nk2
+ 1) σ2

k1
− (nk1

+ 1)nk2
nk1

σ2
k2

= nk1

(
σ2

k2
− σ2

k1

)
(nk1

+ 1) + σ2
k1

(nk1
− nk2

) (nk1
+ nk2

+ 1)

D∆ = (nk1
+ 1) nk2

nk1
(nk2

+ 1)

Since D∆ > 0, the following policy





if N∆ < 0 then test zk1

if N∆ > 0 then test zk2

if N∆ = 0 then test either zk1
or zk2

maximizes µg at round l + 1.

⊓⊔

Theorem 4. Let z# be a set containing two normal random variables zk1
and

zk2
. Suppose that the player adopts a bandit strategy which always tests the same

arm zk1
. zk2

is the other arm which is never tested. If

X ∼ N

(
µk1

− µk2
,
σ2

k2

nk2

)

then

∀l ≥ 1 , µg < ub∞ < µk∗ ,

where

ub∞ = (µk1
− µk2

) · Prob {X > 0} + µk2
.

Proof. Let τ be a positive integer, we can find an upper-bound for µg (see The-
orem 2) :

µg < µl+1
g (k1)

≤ µl+τ
g (k1) .



The future expected greedy gain when arm k1 is tested τ ≥ 1 times is µl+τ
g (k1)

and is analytically defined as follows

µl+τ
g (k1) = µk1

· Prob
{(

µ̂k1
− µ̂k2

)
τ

> 0
}

+ µk2
·
(
1 − Prob

{(
µ̂k1

− µ̂k2

)
τ

> 0
})

= (µk1
− µk2

) · Prob
{(

µ̂k1
− µ̂k2

)
τ

> 0
}

+ µk2

= ubτ

where (
µ̂k1

− µ̂k2

)
τ
∼ N (µk1

− µk2
, V arτ )

and where

V arτ =
σ2

k1

nk1
+ τ

+
σ2

k2

nk2

.

If the player tests infinitely the arm zk1
without reserving any round to explore

zk2
then the variance of

(
µ̂k1

− µ̂k2

)
τ

converges

lim
τ→∞

V arτ = lim
τ→∞

(
σ2

k1

nk1
+ τ

+
σ2

k2

nk2

)
=

σ2
k2

nk2

and we define the random variable X as follows

X =
(
µ̂k1

− µ̂k2

)
∞ ∼ N

(
µk1

− µk2
,
σ2

k2

nk2

)
.

The upper-bound of µg is defined as follows

ub∞ = (µk1
− µk2

) · Prob {X > 0} + µk2

and we have µg < ub∞. ub∞ reaches µk∗ only if Pk∗ = 1 and Pk∗ equals one only

if
σ2

k1

nk1

+
σ2

k2

nk2

= 0 (see figure 1). In the case of a bandit strategy which never tests

zk2
, the variance

σ2
k1

nk1

+
σ2

k2

nk2

converges to
σ2

k2

nk2

and we have thus ub∞ < µk∗ . ⊓⊔

Theorem 2 shows that, whatever the arm selected, the value of µg is always
increasing. Theorem 3 proposes, knowing the characteristics of the arms, a new
exploration strategy and Theorem 4 shows that the evolution of µg of any bandit
strategy which never explores the arms and which always tests the same arm,
is upper-bounded by ub∞ which is smaller than µk∗ . We will now empirically
test these properties on six synthetic problems (table 1) with horizon H = 50.
Three algorithms are compared. At each round l, each of the three algorithms
tests arm k̃. The three algorithms are (i) an oracle greedy exploitation algorithm

which always tests the best arm
[
k̃ = k∗

]
, (ii) a random exploration algorithm

which periodically tests the two arms
[
k̃ = (l mod 2) + 1

]
and (iii) the op-

timal oracle exploration algorithm described in theorem 3 and called optiK2



case 1 case 2 case 3 case 4 case 5 case 6

µ σ µ σ µ σ µ σ µ σ µ σ

z1 0 2 0 1 0 3 0 2 0 0.01 0 0.01
z2 1 2 1 2 1 1 1 0.01 1 2 1 0.01

Table 1. Six synthetic problems to estimate the evolution of µg where K = 2 under (i)
an oracle greedy algorithm, (ii) a random exploration algorithm and (iii) the optiK2
algorithm. For each case, the first and the second column contain respectively the mean
and the standard deviation of the random variables.

[
if N∆ < 0 then k̃ = 1 else k̃ = 2

]
. Initially, n1 and n2 are equal to one. At each

round l and following one of the three algorithms, the value of nk̃ is increased
by one and µg(l) (see eq. (2)) is computed. The evolution of µg in the time for
the six synthetic problems are shown in figure 2.

In all the cases, the curve of µg(l) is increasing (see Theorem 2) and optiK2
is optimal (see Theorem 3). In case 1, σ1 is equal to σ2 such that N∆ = σ2

1(n1 −
n2)(n1 +n2 +1) and optiK2 is then equivalent to a random exploration strategy.
In case 5, the standard deviation of the worst arm is very small such that the term
n1(σ

2
2 − σ2

1)(n1 + 1) in N∆ is very high and optiK2 is equivalent to an oracle
greedy strategy which always tests z2. Note that, with a random exploration
strategy, we have

lim
l→∞

√
σ2

k∗

nk∗

+
σ2

k̄∗

nk̄∗

= 0

and thus (see figure 1)
lim
l→∞

Pk∗ = 1.

This means that playing a great number of random exploration actions guar-
antees that µg will always be improved and that, asymptotically, the value of
µg will reach the value of µk∗ . In the case of bandit strategies which always
test the same arm (like the oracle greedy strategy), we are guaranteed that µg

will always be improved but µg is upper-bounded by ub∞ which is smaller than
µk∗ (see Theorem 4). Without exploration, the evolution of the gain of a greedy
action is upper-bounded by ub∞ and the only way to increase this upper-bound
is to explore the other arm.

3.2 The evolution of µg in the case where K > 2

Consider now the case where K > 2 and let µl+1
g (k) be the next greedy expected

reward when arm k is tested at round l. In this case, we will empirically show that
the evolution of µg is more complex and that the monotone property µl+1

g (k) >
µg shown in Theorem 2 does not always hold. We will consider the evolution of
µg under a pure exploitation and a pure exploration policy.

First, consider the evolution of µg under a pure oracle exploitation greedy
algorithm which knows the index k∗ and always tests this best arm. We will
show that in some cases, mainly when the σ√

n
of the bad alternatives is high,
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case 1 ub∞ = 0.69 case 2 ub∞ = 0.84

case 3 ub∞ = 0.63 case 4 ub∞ = 0.69

case 5 ub∞ = 1 case 6 ub∞ = 1
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Fig. 2. Evolution of µg for the six synthetic problems under an oracle greedy algorithm,
random exploration algorithm and the optiK2 algorithm. For each case, the value of
the upper-bound ub∞ is given.

the value of µl+1
g (k)− µg can be negative such that an oracle greedy action can

reduce the value of µg at the next round l + 1.

Six synthetic example cases (see table 2 and fig. 3) are tested in which nk∗

takes its value in [1, 200] and where σk∗ is always equal to 10. The first three
cases concern problems where K = 3 and in the last three cases K = 4. In the
cases 1, 2 and 5 the σ√

n
of the worst arms has the same value, a small value in

case 1 and in case 5 and a higher value in case 2. The plots of the cases 1 and
5 show that increasing the nk∗ of the best alternative, increases µg if the σ√

n
of

the bad arms is small. Case 2 is the opposite : if the σ√
n

of the bad arms is high,

then increasing the number of tests made on the best alternative, decreases µg.
In the cases 3, 4 and 6 the σ√

n
of the worst alternatives is not the same and the

corresponding plots in figure 3 are more non-linear. At the beginning (i.e. when
the σk∗√

nk∗

is high), testing the best zk∗ will degrade µg and when σk∗√
nk∗

is small

enough, testing zk∗ will improve µg. Note that, like in case 4, this improvement
of µg can be very small. The two last cases are example cases where the means
of the bad alternatives are different.

Note that in the cases 1, 2, 3 and 4, we have µk∗ = 1 and the other means
equal zero. In these four first cases, the expected gain of a greedy action µg

equals thus the probability of correct selection Pk∗ . In case 1, the Pk∗ evolution,



Oracle exploitation greedy problem K > 2
case 1 case 2 case 3 case 4 case 5 case 6

µ σ√
n

µ σ√
n

µ σ√
n

µ σ√
n

µ σ√
n

µ σ√
n

z1 0 0.0001 0 5 0 1 0 0.0001 0 0.0001 0 0.0001
z2 0 0.0001 0 5 0 10 0 4 0.2 0.0001 0.2 4
z3 1 · 1 · 1 · 0 6 0.7 0.0001 0.7 6
z4 1 · 1 · 1 ·

Table 2. Six synthetic problems to estimate the evolution of µg under an oracle ex-
ploitation greedy algorithm where K > 2. For each case, the first column contains the
mean of the random variable and the second one contains the standard deviation of
the sample average.

under an oracle greedy algorithm, is monotone increasing and in case 2 , Pk∗ is
monotone decreasing. In the cases 3 and 4, the Pk∗ evolution is more non-linear.
Given a set of K random variables {z1, . . . , zK}, where nk is the number of
observed rewards from zk and where µ̂k is the corresponding sample average of
zk. We have

Pk∗ = Prob
{

µ̂k∗ > µ̂1 , . . . , µ̂k∗ > µ̂k∗−1 , µ̂k∗ > µ̂k∗+1 , . . . , µ̂k∗ > µ̂K

}
(3)

= Prob {µ̂k∗ > Xmax} (4)

where

Xmax = max
k∈[1K]/k∗

µ̂k

In equation 3, the probability of correct selection is the probability that µ̂k∗

is the highest in a set of K random variables {µ̂1, . . . , µ̂K}. In equation 4, the
bandit problem is transformed and the probability of correct selection is the prob-
ability that µ̂k∗ is the highest in a set of only 2 random variables {µ̂k∗ ,Xmax}.
Figure 4 gives the probability density function of Xmax in the four cases.

In case 1, the k∗th arm is confronted with Xmax which has a mean which is
almost equal to zero. In case 1, testing arm k∗ reduces the standard deviation
of µ̂k∗ and increases thus the probability that arm k∗ will be selected by a
greedy action. In case 2, the special arm Xmax has a higher mean than the
mean of µ̂k∗ which is one. µ̂k∗ has more chance to win with a higher standard
deviation. Testing arm k∗ reduces the standard deviation of µ̂k∗ and decreases
the probability that arm k∗ will be selected by a greedy action.

Note the non-regularity of the Xmax probability density functions of cases 3
and 4.

We now consider the evolution of µg when K > 2 under a pure random ex-
ploration algorithm which periodically tests the two arms. Six synthetic example
cases (see table 3 and fig. 5) are tested with horizon H = 200. We observe that,
in all six cases, the value of µg is always increasing when a random exploration
algorithm is applied. The rate of the increase is high at the beginning and lower
at the end.
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Fig. 3. Evolution of µg of the six synthetic problems under an oracle exploitation
greedy algorithm. Note that in the cases 1, 2, 3 and 4, the expected gain of a greedy
action µg equals the probability of correct selection Pk∗

As conclusion, applying a greedy policy when the σ√
n

of the bad arms is

high decreases the value of the next µg. It is better to make exploration at the
beginning to improve µg and when the σ√

n
of the bad arms is small enough the

player must move to a more greedy exploitation mode.

4 Conclusion

In this paper, we give an analytical definition of the expected gain of the well-
known greedy exploitation action and study its evolution in the context of the
bandit problem. In the case where K = 2, we give an optimal exploration strat-
egy and we show that testing an arm will always improve the next greedy ex-
pected gain µg. Results show also that, the µg evolution of strategies which
always test the same arm are upper-bounded by a smaller value than µk∗ . In the
case where K > 2, the mode in which a semi-uniform bandit policy is working
affects the evolution of µg. At the beginning of the problem or when the reward
variances of the bandit machines are high, a greedy action can reduce the next
µg and random exploration is thus a better working mode. When enough knowl-
edge is collected, such that the σ√

n
values are small, the policy must converge

to a more greedy exploitation mode. Future work will focus on the estimation
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Fig. 4. Monte Carlo determination of Xmax for the cases 1, 2, 3 and 4. The mean and
the standard deviation are estimated in all the cases.

of µg based on the historical samples {Zk(l)}, k = 1, . . . ,K and on the use of
these µg estimators to propose a new bandit algorithm.
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Random exploration problem K > 2
case 1 case 2 case 3 case 4 case 5 case 6

µ σ µ σ µ σ µ σ µ σ µ σ

z1 0 1 0 3 0 3 0 3 0 6 0 6
z2 0 1 0 1 0 3 0 0.1 0.2 3 0.2 3
z3 1 0.1 1 0.1 1 0.1 1 3 0.7 0.1 0.7 0.1
z4 1 3 1 0.1

Table 3. Six synthetic problems to estimate the evolution of µg under a random
exploration algorithm where K > 2. For each case, the first and the second column
contain respectively the mean and the standard deviation of the random variables.
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Fig. 5. Evolution of µg of the six synthetic problems under a random exploration
algorithm.


